研究报告(三):欧洲2030年及2050年储能目标研究

欧洲储能协会根据之前的文献回顾、更新的假设和修订的气候目标估计了2030年和2050年欧盟的储能需求。先前在长时储能委员会的官方文件中定义了灵活性需求。因此使用欧盟委员会关于储能系统的研究和最近的储能影响评估为定义2030年和2050年灵活性需求的基础。然而,正如第三节所强调的,需要更新关键信息以准确反映当今的储能需求。考虑之前在第1.1节中涵盖的清洁能源包定义所定义的“储能”技术。在此处定义的储能需求应该设定为欧盟层面的2030年和2050年储能目标,符合当今欧盟的最佳实践。

4.1、2030年的灵活性需求

欧洲储能协会的储能研究报告发现,到2030年将需要部署456GW储能系统提供能源灵活性,但这是基于原有的气候目标预测的,因此到2030年总体灵活性需求将更大。如图10显示,76%的灵活性电力供应来自天然气发电设施,并没有配套碳捕集利用和储存(CCUS)设施,并且这一情景中仅包括两种储能技术(抽水蓄能发电设施和电池储能系统)。这意味着许多现成的储能技术的代表性不足,并且提供灵活性的天然气发电设施数量不成比例,不符合当今的脱碳议程和能源安全计划。

20220711_081850_001.png

图12到2030年欧盟的总储能需求。Y轴显示不同储能技术的装机容量(GW),基于关于储能值的研究中定义的总灵活性、到2030年替代天然气发电厂的假设以及其他研究。Power-to-X技术以蓝色显示,并提供单向的系统灵活性。Power-to-X-to-Power技术以绿色显示,并提供双向的系统灵活性,即电力返回系统,这些技术提供关键的能源转换服务。总储能需求由红色虚线表示,到2030年至少为187GW,这包括新的和现有的储能系统(欧洲现有储能系统约为60GW,包括57GW抽水蓄能发电设施和3.8GW电池储能系统)

4.3、2050年的灵活性需求

欧盟委员会关于2050年储能情景的研究,预计到2050年总系统灵活性需求为811GW,其中600GW由储能技术提供,211GW由天然气发电厂提供。其研究涵盖的2050年情景主要集中在氢气电解槽上,这只是众多可用储能解决方案中的一种。这导致其他关键储能技术的代表性不足,这些技术可以在这个时间范围内提供必要的灵活性和能量转换服务。例如,抽水蓄能发电设施(PHS)的装机容量与2030年情景相比仍处于停滞不前的状态,这表明预计到2050年不会进行扩展,这与前面提到的关于欧洲部署的抽水蓄能发电设施(PHS)潜在扩展能力不符。由于大多数电力系统模型都是由成本最低的解决方案驱动的,因此应仅根据最佳技术匹配来解决电力系统需求。当今的成本假设和技术创新不断变化,必须进行更新以提供准确的储能需求,尤其是到2050年。鉴于从现在到2050年的时间范围,不可能预测技术创新和成本降低或政策和市场变化。其他清洁能源技术(例如风力发电和太阳能发电)已经在更短的时间内显著降低了成本。对于更多的储能技术,到2050年的时间范围内可能会出现类似的成本降低。如今的模型中应考虑基于所有技术的最佳情况成本假设的敏感性分析。虽然对欧盟研究储能中所述到2050年所需的灵活性数量没有争议,但其他研究表明,这种灵活性需求将由许多不同的技术来满足。

4.4、2050年欧盟储能目标估算

在这里,根据一些研究报告针对不同储能技术的最新数据以及基于提供能量转换和Power-to-X 的Power-to-X-to-Power技术的系统灵活性假设,提出对2050年储能的目标估计这些技术在单向提供系统灵活性)。由于无法预测2050年的绝对情景和技术组合,欧洲储能协会的估计基于以下范围和假设。

对2050年目标估计的评估中包含的假设,如图13所示,Power-to-X-to-Power技术提供能量转换灵活性,其中能量回馈给系统(双向)。

(1)在欧盟影响评估中包括65GW的抽水蓄能发电设施,考虑到之前强调的抽水蓄能发电设施的潜在产能扩张,这是一个保守的估计。

(2)预计到2040年,欧盟长时储能技术的装机容量将达到128GW~264GW,估计长时储能系统的装机容量平均为200GW。其中包括:液化空气储能系统、压缩空气储能系统、重力储能、热储能、电化学储能和电解槽。

(3)基于欧洲电动汽车部署情景的120GW的车辆到电网(V2G)。法国TSORTE公司估计1.7GW车辆到电网(V2G)设施用于110万辆电动汽车的充电,假设2050年欧洲有7700万辆电动汽车。

(4)长时储能委员会从2021年开始的工作人员工作文件指出,到2050年,部署的电池储能系统的装机容量将超过100GW[。到2050年,电池在欧盟储能研究中的作用范围为1~70GW,这取决于对部署的敏感性以及其他竞争技术(包括V2G和电解槽)的成本。因此,可以取这些值的平均值(1-100GW)并保守估计,将50GW的电池储能系统包括在2050年的估计中。

正式如欧盟的研究所述,为满足2050年的总储能灵活性需求,Power-to-X解决方案可以提供165GW的电力,该解决方案在提供系统灵活性(能量不回馈给电力系统)。

估计是基于对电力系统的双向流动对电力系统灵活性的储能需求,其部署范围在315GW~550GW之间,估计约为435GW。额外165GW的power-to-X储能技术对于电力系统灵活性是必要的,因此总共需要600GW。最后,到2050年,天然气发电厂的作用同样可以由具有成本竞争力的储能技术来填补,并且在这个时间范围内可能会进一步增加储能需求。尽管如此,基于这些假设,到2050年将需要至少600GW的总储能需求。图13说明了这一点,其中power-to-X技术以蓝色突出显示,并提供单向的系统灵活性。

Power-to-X-to-Power技术以绿色显示,并提供双向的系统灵活性,即将电力返回电力系统,这些技术提供关键的能源转换服务。

20220711_081850_003.png

图13欧盟到2050年的总储能需求。Y轴显示不同储能技术的装机容量(GW),基于欧盟储能研究中定义的总灵活性需求和其他研究报告。Power-to-X技术以蓝色显示,并提供单向的系统灵活性。Power-to-X-to-Power技术以绿色显示,并提供双向的电力系统灵活性,即电力返回系统,这些技术提供关键的能源转换服务。用红色虚线表示的总储能需求在2050年至少达到600GW。

5、结论

如果欧盟成员国现在不采取行动,其电力系统可能无法支持当今REPowerEU所预见的可再生能源整合。为了适应电力系统中可再生能源发电份额不断增长,需要储能系统来提供关键的系统灵活性和能量转换服务。当前的市场预测严重低估了储能需求,并且迫切需要大规模增加部署储能系统以整合可再生能源。根据国际能源署(IEA)的数据,与欧盟在2020年部署的0.8GW电池储能系统相比,在未来9年需要大规模部署储能系统,将至少每年部署14GW。如果要确保能源安全并减少对第三方进口化石燃料的依赖,尤其是在当今已经有了低排放储能技术的情况下,依靠化石燃料发电和灵活性不是未来的选择。

在本文中,基于对欧洲电力系统的大量科学研究和分析的广泛审查,强调了估算欧盟储能目标的基本原理。在此并不预测储能技术组合本身,因为不断变化的成本、技术和创新格局在未来将不可避免地发生变化,因此无法预测。然而,考虑所有技术,包括Power-to-X-to-Power和Power-to-X-解决方案,将电力系统需求视为一个整体。

考虑到大量研究的投入和关于用低排放储能技术取代部分天然气发电厂灵活性的假设,估计约200GW的储能需求是2030年的一个理想的选择(包括欧洲现有的储能容量)。到2050年,估计欧盟的电力系统至少需要部署600GW的储能系统。这是基于从Power-to-X-to-Power解决方案(即能量转换)的双向流动方面的需求,估计435GW储能系统作为2050年的选择,辅以165GW的Power -to-X技术提供单向的系统灵活性。正如REPowerEU计划中强调的那样,储能系统减少了电力系统中天然气发电厂的使用,因此天然气发电厂提供灵活性的作用可能会在2030年和2050年被储能技术进一步替代,这意味着储能需求可能会更加均衡。在这两种情况下都更高。

将这些2030年和2050年的价值确定为欧盟层面的储能目标,并制定专门的储能战略,将为储能行业和投资者提供一个明确的信号,以开始建设推动大规模部署所需的基础设施,同时支持可再生能源整合。储能目标是对现有欧盟气候目标的必要补充,将使欧洲能够建立一个独立于化石燃料能源进口的本地可持续绿色电力系统。

6、附件:支持信息

6.1 可变可再生能源份额与储能需求之间的关系

仅着眼于一个关键问题的高可变可再生电力系统的需求,一项值得注意的研究着眼于电力组合中可变可再生能源(vRE)份额与灵活性和能量转换所需的储能系统之间的关系。这项研究不仅强调了发电技术(风力发电或太阳能发电)的重要性,还强调了两者在电力结构中的比例对随后的储能需求和持续时间的影响。这一研究回顾了文献中的400多种不同情景,将范围缩小到欧洲。更高的太阳能发电量通常需要电池储能系统提供更多的日常能量转换灵活性,而以风力发电为主的电力系统需要更长期的能量转换以应对数天或数周的低风量)。在表1中,说明了欧洲以风能或太阳能为主的电力组合的储能需求。可变可再生能源的份额取自欧盟委员会的影响评估情景,2030年为67%,到2050年约为85%。这些值表明,具有较高太阳能发电量的电力系统需要部署更多的储能系统来解决电力系统灵活性和能量转换,而以风力发电为主的电力系统需要更多的长时储能系统来解决数天或数周的电力短缺问题。这是一个重要的观察结果,将影响基于发电技术(风电或太阳能发电)的储能需求,这将因欧盟成员国不同而有所不同,必须加以考虑。需要注意的是,这些结果还取决于储能系统的持续时间,较长的持续时间意味着较低的装机容量,反之亦然。

202207100927339940.png

6.2、计算到2030年电力部门需要减少天然气发电量,以实现55%的温室气体减排目标

欧盟的影响评估研究表明,要实现情景中修订后的减少55%温室气体的目标,需要将天然气总发电量减少30%(与2015年相比)。这意味着到2030年,与基本情景相比,需要将天然气发电用量再减少17%,才能实现减少55%的温室气体的目标。如上所述,欧盟对2020年储能的研究基于过时的目标,因此认为到2030年仍有不成比例的天然气发电厂提供灵活性。

20220711_081850_004.png

图14 欧盟委员会影响评估中的2030年情景

6.3、2030年储能目标预测的输入和参考摘要

表2总结了用于2030年储能预测的关键输入和来源。将研究包括在表中以了解车辆到电网(V2G)的贡献,并指出认为这是一种具有竞争力的电池储能解决方案,可以提供短期灵活性。当然,并不是所有的电池储能应用都可以由车辆到电网提供,因为无法将每个贡献分开,但将33GW车辆到电网包括在由电池储能系统和其他短时技术提供的67GW系统灵活性。

20220711_081850_005.png

表2用于2030年欧盟储能预测的关键数据和来源汇总

6.4、2050年储能目标预测的输入和参考摘要

20220711_081850_006.png

相关阅读

研究报告(一):欧洲2030年及2050年储能目标研究

研究报告(二):欧洲2030年及2050年储能目标研究

 

我们登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,其原创性以及文中陈述文字和内容未经证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,文章内容仅供参考! 因内容为机器人自动从互联网自动抓取,如您不希望您的作品出现在我们的平台,请和我们联系处理邮箱[email protected],电话:18626060360,谢谢!

(0)
管理员管理员
上一篇 2022-07-11 21:04
下一篇 2022-07-11 21:08

相关推荐

分享本页
返回顶部